On finitely generated multiplication modules
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 503-510
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We shall prove that if $M$ is a finitely generated multiplication module and $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$, then there exists a distributive lattice $\bar{M}$ such that $\mathop {\mathrm Spec}(M)$ with Zariski topology is homeomorphic to $\mathop {\mathrm Spec}(\bar{M})$ to Stone topology. Finally we shall give a characterization of finitely generated multiplication $R$-modules $M$ such that $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$.
Classification :
06B10, 13A15, 13C13, 13C99
Keywords: prime submodules; multiplication modules; distributive lattices; spectral spaces
Keywords: prime submodules; multiplication modules; distributive lattices; spectral spaces
@article{CMJ_2005__55_2_a20,
author = {Nekooei, R.},
title = {On finitely generated multiplication modules},
journal = {Czechoslovak Mathematical Journal},
pages = {503--510},
publisher = {mathdoc},
volume = {55},
number = {2},
year = {2005},
mrnumber = {2137157},
zbl = {1084.13500},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a20/}
}
Nekooei, R. On finitely generated multiplication modules. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 503-510. http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a20/