On finitely generated multiplication modules
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 503-510.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We shall prove that if $M$ is a finitely generated multiplication module and $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$, then there exists a distributive lattice $\bar{M}$ such that $\mathop {\mathrm Spec}(M)$ with Zariski topology is homeomorphic to $\mathop {\mathrm Spec}(\bar{M})$ to Stone topology. Finally we shall give a characterization of finitely generated multiplication $R$-modules $M$ such that $\mathop {\mathrm Ann}(M)$ is a finitely generated ideal of $R$.
Classification : 06B10, 13A15, 13C13, 13C99
Keywords: prime submodules; multiplication modules; distributive lattices; spectral spaces
@article{CMJ_2005__55_2_a20,
     author = {Nekooei, R.},
     title = {On finitely generated multiplication modules},
     journal = {Czechoslovak Mathematical Journal},
     pages = {503--510},
     publisher = {mathdoc},
     volume = {55},
     number = {2},
     year = {2005},
     mrnumber = {2137157},
     zbl = {1084.13500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a20/}
}
TY  - JOUR
AU  - Nekooei, R.
TI  - On finitely generated multiplication modules
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 503
EP  - 510
VL  - 55
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a20/
LA  - en
ID  - CMJ_2005__55_2_a20
ER  - 
%0 Journal Article
%A Nekooei, R.
%T On finitely generated multiplication modules
%J Czechoslovak Mathematical Journal
%D 2005
%P 503-510
%V 55
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a20/
%G en
%F CMJ_2005__55_2_a20
Nekooei, R. On finitely generated multiplication modules. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 2, pp. 503-510. http://geodesic.mathdoc.fr/item/CMJ_2005__55_2_a20/