Balanced Colombeau products of the distributions $x_{\pm}^{-p}$ and $x^{-p}$
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 189-201.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Results on singular products of the distributions $x_{\pm }^{-p}$ and $x^{-p}$ for natural $p$ are derived, when the products are balanced so that their sum exists in the distribution space. These results follow the pattern of a known distributional product published by Jan Mikusiński in 1966. The results are obtained in the Colombeau algebra of generalized functions, which is the most relevant algebraic construction for tackling nonlinear problems of Schwartz distributions.
Classification : 46F10, 46F30
Keywords: Schwartz distributions; multiplication; Colombeau generalized functions
@article{CMJ_2005__55_1_a13,
     author = {Damyanov, B. P.},
     title = {Balanced {Colombeau} products of the distributions  $x_{\pm}^{-p}$ and $x^{-p}$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {189--201},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2005},
     mrnumber = {2121666},
     zbl = {1081.46027},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_1_a13/}
}
TY  - JOUR
AU  - Damyanov, B. P.
TI  - Balanced Colombeau products of the distributions  $x_{\pm}^{-p}$ and $x^{-p}$
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 189
EP  - 201
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005__55_1_a13/
LA  - en
ID  - CMJ_2005__55_1_a13
ER  - 
%0 Journal Article
%A Damyanov, B. P.
%T Balanced Colombeau products of the distributions  $x_{\pm}^{-p}$ and $x^{-p}$
%J Czechoslovak Mathematical Journal
%D 2005
%P 189-201
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2005__55_1_a13/
%G en
%F CMJ_2005__55_1_a13
Damyanov, B. P. Balanced Colombeau products of the distributions  $x_{\pm}^{-p}$ and $x^{-p}$. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 189-201. http://geodesic.mathdoc.fr/item/CMJ_2005__55_1_a13/