New sufficient convergence conditions for the secant method
Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 175-187.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We provide new sufficient conditions for the convergence of the secant method to a locally unique solution of a nonlinear equation in a Banach space. Our new idea uses “Lipschitz-type” and center-“Lipschitz-type” instead of just “Lipschitz-type” conditions on the divided difference of the operator involved. It turns out that this way our error bounds are more precise than the earlier ones and under our convergence hypotheses we can cover cases where the earlier conditions are violated.
Classification : 47H17, 47J25, 49M15, 65B05, 65G99, 65H10, 65J15, 65N30
Keywords: secant method; Banach space; majorizing sequence; divided difference; Fréchet-derivative
@article{CMJ_2005__55_1_a12,
     author = {Argyros, Ioannis K.},
     title = {New sufficient convergence conditions for the secant method},
     journal = {Czechoslovak Mathematical Journal},
     pages = {175--187},
     publisher = {mathdoc},
     volume = {55},
     number = {1},
     year = {2005},
     mrnumber = {2121665},
     zbl = {1081.65043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2005__55_1_a12/}
}
TY  - JOUR
AU  - Argyros, Ioannis K.
TI  - New sufficient convergence conditions for the secant method
JO  - Czechoslovak Mathematical Journal
PY  - 2005
SP  - 175
EP  - 187
VL  - 55
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2005__55_1_a12/
LA  - en
ID  - CMJ_2005__55_1_a12
ER  - 
%0 Journal Article
%A Argyros, Ioannis K.
%T New sufficient convergence conditions for the secant method
%J Czechoslovak Mathematical Journal
%D 2005
%P 175-187
%V 55
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2005__55_1_a12/
%G en
%F CMJ_2005__55_1_a12
Argyros, Ioannis K. New sufficient convergence conditions for the secant method. Czechoslovak Mathematical Journal, Tome 55 (2005) no. 1, pp. 175-187. http://geodesic.mathdoc.fr/item/CMJ_2005__55_1_a12/