On domination number of 4-regular graphs
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 889-898.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $G$ be a simple graph. A subset $S \subseteq V$ is a dominating set of $G$, if for any vertex $v \in V~- S$ there exists a vertex $u \in S$ such that $uv \in E (G)$. The domination number, denoted by $\gamma (G)$, is the minimum cardinality of a dominating set. In this paper we prove that if $G$ is a 4-regular graph with order $n$, then $\gamma (G) \le \frac{4}{11}n$.
Classification : 05C69
Keywords: regular graph; dominating set; domination number
@article{CMJ_2004__54_4_a5,
     author = {Liu, Hailong and Sun, Liang},
     title = {On domination number of 4-regular graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {889--898},
     publisher = {mathdoc},
     volume = {54},
     number = {4},
     year = {2004},
     mrnumber = {2100002},
     zbl = {1080.05524},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_4_a5/}
}
TY  - JOUR
AU  - Liu, Hailong
AU  - Sun, Liang
TI  - On domination number of 4-regular graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 889
EP  - 898
VL  - 54
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_4_a5/
LA  - en
ID  - CMJ_2004__54_4_a5
ER  - 
%0 Journal Article
%A Liu, Hailong
%A Sun, Liang
%T On domination number of 4-regular graphs
%J Czechoslovak Mathematical Journal
%D 2004
%P 889-898
%V 54
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_4_a5/
%G en
%F CMJ_2004__54_4_a5
Liu, Hailong; Sun, Liang. On domination number of 4-regular graphs. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 889-898. http://geodesic.mathdoc.fr/item/CMJ_2004__54_4_a5/