On the minus domination number of graphs
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 883-887
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $G = (V,E)$ be a simple graph. A $3$-valued function $f\:V(G)\rightarrow \lbrace -1,0,1\rbrace $ is said to be a minus dominating function if for every vertex $v\in V$, $f(N[v]) = \sum _{u\in N[v]}f(u)\ge 1$, where $N[v]$ is the closed neighborhood of $v$. The weight of a minus dominating function $f$ on $G$ is $f(V) = \sum _{v\in V}f(v)$. The minus domination number of a graph $G$, denoted by $\gamma ^-(G)$, equals the minimum weight of a minus dominating function on $G$. In this paper, the following two results are obtained. (1) If $G$ is a bipartite graph of order $n$, then \[ \gamma ^-(G)\ge 4\bigl (\sqrt{n + 1}-1\bigr )-n. \] (2) For any negative integer $k$ and any positive integer $m\ge 3$, there exists a graph $G$ with girth $m$ such that $\gamma ^-(G)\le k$. Therefore, two open problems about minus domination number are solved.
@article{CMJ_2004__54_4_a4,
author = {Liu, Hailong and Sun, Liang},
title = {On the minus domination number of graphs},
journal = {Czechoslovak Mathematical Journal},
pages = {883--887},
publisher = {mathdoc},
volume = {54},
number = {4},
year = {2004},
mrnumber = {2100001},
zbl = {1080.05523},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_4_a4/}
}
Liu, Hailong; Sun, Liang. On the minus domination number of graphs. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 883-887. http://geodesic.mathdoc.fr/item/CMJ_2004__54_4_a4/