Natural $T$-functions on the cotangent bundle of a Weil bundle
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 869-882
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A natural $T$-function on a natural bundle $F$ is a natural operator transforming vector fields on a manifold $M$ into functions on $FM$. For any Weil algebra $A$ satisfying $\dim M \ge {\mathrm width}(A)+1$ we determine all natural $T$-functions on $T^*T^AM$, the cotangent bundle to a Weil bundle $T^AM$.
@article{CMJ_2004__54_4_a3,
author = {Tom\'a\v{s}, Ji\v{r}{\'\i}},
title = {Natural $T$-functions on the cotangent bundle of a {Weil} bundle},
journal = {Czechoslovak Mathematical Journal},
pages = {869--882},
publisher = {mathdoc},
volume = {54},
number = {4},
year = {2004},
mrnumber = {2100000},
zbl = {1080.58001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_4_a3/}
}
Tomáš, Jiří. Natural $T$-functions on the cotangent bundle of a Weil bundle. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 4, pp. 869-882. http://geodesic.mathdoc.fr/item/CMJ_2004__54_4_a3/