A full characterization of multipliers for the strong $\rho$-integral in the euclidean space
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 657-674
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We study a generalization of the classical Henstock-Kurzweil integral, known as the strong $\rho $-integral, introduced by Jarník and Kurzweil. Let $(\mathcal S_{\rho } (E), \Vert \cdot \Vert )$ be the space of all strongly $\rho $-integrable functions on a multidimensional compact interval $E$, equipped with the Alexiewicz norm $\Vert \cdot \Vert $. We show that each element in the dual space of $(\mathcal S_{\rho } (E), \Vert \cdot \Vert )$ can be represented as a strong $\rho $-integral. Consequently, we prove that $fg$ is strongly $\rho $-integrable on $E$ for each strongly $\rho $-integrable function $f$ if and only if $g$ is almost everywhere equal to a function of bounded variation (in the sense of Hardy-Krause) on $E$.
Classification :
26A39, 46E99, 46G10
Keywords: strong $\rho $-integral; multipliers; dual space
Keywords: strong $\rho $-integral; multipliers; dual space
@article{CMJ_2004__54_3_a8,
author = {Tuo-Yeong, Lee},
title = {A full characterization of multipliers for the strong $\rho$-integral in the euclidean space},
journal = {Czechoslovak Mathematical Journal},
pages = {657--674},
publisher = {mathdoc},
volume = {54},
number = {3},
year = {2004},
mrnumber = {2086723},
zbl = {1080.26007},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a8/}
}
TY - JOUR AU - Tuo-Yeong, Lee TI - A full characterization of multipliers for the strong $\rho$-integral in the euclidean space JO - Czechoslovak Mathematical Journal PY - 2004 SP - 657 EP - 674 VL - 54 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a8/ LA - en ID - CMJ_2004__54_3_a8 ER -
Tuo-Yeong, Lee. A full characterization of multipliers for the strong $\rho$-integral in the euclidean space. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 657-674. http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a8/