An improvement of an inequality of Fiedler leading to a new conjecture on nonnegative matrices
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 773-780.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose that $A$ is an $n\times n$ nonnegative matrix whose eigenvalues are $\lambda = \rho (A), \lambda _2,\ldots , \lambda _n$. Fiedler and others have shown that $\det (\lambda I - A) \le \lambda ^n - \rho ^n$, for all $\lambda > \rho $, with equality for any such $\lambda $ if and only if $A$ is the simple cycle matrix. Let $a_i$ be the signed sum of the determinants of the principal submatrices of $A$ of order $i\times i$, $i = 1,\ldots ,n - 1$. We use similar techniques to Fiedler to show that Fiedler’s inequality can be strengthened to: $\det (\lambda I - A) + \sum _{i = 1}^{n - 1} \rho ^{n - 2i}|a_i|(\lambda - \rho )^i \le \lambda ^n -\rho ^n$, for all $\lambda \ge \rho $. We use this inequality to derive the inequality that: $\prod _{2}^{n}(\rho - \lambda _i) \le \rho ^{n - 2}\sum _{i = 2}^{n}(\rho - \lambda _i)$. In the spirit of a celebrated conjecture due to Boyle-Handelman, this inequality inspires us to conjecture the following inequality on the nonzero eigenvalues of $A$: If $\lambda _1 = \rho (A),\lambda _2,\ldots , \lambda _k$ are (all) the nonzero eigenvalues of $A$, then $\prod _{2}^{k}(\rho - \lambda _i) \le \rho ^{k-2}\sum _{i = 2}^{k}(\rho -\lambda )$. We prove this conjecture for the case when the spectrum of $A$ is real.
Classification : 15A15, 15A48
Keywords: nonnegative matrices; M-matrices; determinants
@article{CMJ_2004__54_3_a18,
     author = {Goldberger, Assaf and Neumann, Michael},
     title = {An improvement of an inequality of {Fiedler} leading to a new conjecture on nonnegative matrices},
     journal = {Czechoslovak Mathematical Journal},
     pages = {773--780},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2004},
     mrnumber = {2086733},
     zbl = {1080.15502},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a18/}
}
TY  - JOUR
AU  - Goldberger, Assaf
AU  - Neumann, Michael
TI  - An improvement of an inequality of Fiedler leading to a new conjecture on nonnegative matrices
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 773
EP  - 780
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a18/
LA  - en
ID  - CMJ_2004__54_3_a18
ER  - 
%0 Journal Article
%A Goldberger, Assaf
%A Neumann, Michael
%T An improvement of an inequality of Fiedler leading to a new conjecture on nonnegative matrices
%J Czechoslovak Mathematical Journal
%D 2004
%P 773-780
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a18/
%G en
%F CMJ_2004__54_3_a18
Goldberger, Assaf; Neumann, Michael. An improvement of an inequality of Fiedler leading to a new conjecture on nonnegative matrices. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 773-780. http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a18/