Some characterization of locally nonconical convex sets
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 767-771.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A closed convex set $Q$ in a local convex topological Hausdorff spaces $X$ is called locally nonconical (LNC) if for every $x, y\in Q$ there exists an open neighbourhood $U$ of $x$ such that $(U\cap Q)+\frac{1}{2}(y-x)\subset Q$. A set $Q$ is local cylindric (LC) if for $x,y\in Q$, $x\ne y$, $z\in (x,y)$ there exists an open neighbourhood $U$ of $z$ such that $U\cap Q$ (equivalently: $\mathrm bd(Q)\cap U$) is a union of open segments parallel to $[x,y]$. In this paper we prove that these two notions are equivalent. The properties LNC and LC were investigated in [3], where the implication ${\mathrm LNC}\Rightarrow {\mathrm LC}$ was proved in general, while the inverse implication was proved in case of Hilbert spaces.
Classification : 46A55, 46Cxx, 52A05
Keywords: stable convex set
@article{CMJ_2004__54_3_a17,
     author = {Seredy\'nski, Witold},
     title = {Some characterization of locally nonconical convex sets},
     journal = {Czechoslovak Mathematical Journal},
     pages = {767--771},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2004},
     mrnumber = {2086732},
     zbl = {1080.52500},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a17/}
}
TY  - JOUR
AU  - Seredyński, Witold
TI  - Some characterization of locally nonconical convex sets
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 767
EP  - 771
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a17/
LA  - en
ID  - CMJ_2004__54_3_a17
ER  - 
%0 Journal Article
%A Seredyński, Witold
%T Some characterization of locally nonconical convex sets
%J Czechoslovak Mathematical Journal
%D 2004
%P 767-771
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a17/
%G en
%F CMJ_2004__54_3_a17
Seredyński, Witold. Some characterization of locally nonconical convex sets. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 767-771. http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a17/