On semiconvexity properties of rotationally invariant functions in two dimensions
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 559-571.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $f$ be a function defined on the set ${\mathbf M}^{2\times 2}$ of all $2$ by $2$ matrices that is invariant with respect to left and right multiplications of its argument by proper orthogonal matrices. The function $f$ can be represented as a function $\tilde{f}$ of the signed singular values of its matrix argument. The paper expresses the ordinary convexity, polyconvexity, and rank 1 convexity of $f$ in terms of its representation $\tilde{f}.$
Classification : 26B25, 49J10, 49J45, 74B20, 74G65
Keywords: semiconvexity; rank 1 convexity; polyconvexity; convexity; rotational invariance
@article{CMJ_2004__54_3_a1,
     author = {\v{S}ilhav\'y, M.},
     title = {On semiconvexity properties of rotationally invariant functions in two dimensions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {559--571},
     publisher = {mathdoc},
     volume = {54},
     number = {3},
     year = {2004},
     mrnumber = {2086716},
     zbl = {1080.49013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a1/}
}
TY  - JOUR
AU  - Šilhavý, M.
TI  - On semiconvexity properties of rotationally invariant functions in two dimensions
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 559
EP  - 571
VL  - 54
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a1/
LA  - en
ID  - CMJ_2004__54_3_a1
ER  - 
%0 Journal Article
%A Šilhavý, M.
%T On semiconvexity properties of rotationally invariant functions in two dimensions
%J Czechoslovak Mathematical Journal
%D 2004
%P 559-571
%V 54
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a1/
%G en
%F CMJ_2004__54_3_a1
Šilhavý, M. On semiconvexity properties of rotationally invariant functions in two dimensions. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 3, pp. 559-571. http://geodesic.mathdoc.fr/item/CMJ_2004__54_3_a1/