Complete subobjects of fuzzy sets over $MV$-algebras
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 379-392
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
A subobjects structure of the category $\Omega $- of $\Omega $-fuzzy sets over a complete $MV$-algebra $\Omega =(L,\wedge ,\vee ,\otimes ,\rightarrow )$ is investigated, where an $\Omega $-fuzzy set is a pair ${\mathbf A}=(A,\delta )$ such that $A$ is a set and $\delta \:A\times A\rightarrow \Omega $ is a special map. Special subobjects (called complete) of an $\Omega $-fuzzy set ${\mathbf A}$ which can be identified with some characteristic morphisms ${\mathbf A}\rightarrow \Omega ^*=(L\times L,\mu )$ are then investigated. It is proved that some truth-valued morphisms $\lnot _{\Omega }\:\Omega ^*\rightarrow \Omega ^*,\cap _{\Omega }$, $\cup _{\Omega } \:\Omega ^*\times \Omega ^*\rightarrow \Omega ^*$ are characteristic morphisms of complete subobjects.
Classification :
03E72, 06D15, 18B05
Keywords: fuzzy set over $MV$-lagebra; complete subobjects; subobjects classification
Keywords: fuzzy set over $MV$-lagebra; complete subobjects; subobjects classification
@article{CMJ_2004__54_2_a9,
author = {Mo\v{c}ko\v{r}, Ji\v{r}{\'\i}},
title = {Complete subobjects of fuzzy sets over $MV$-algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {379--392},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2004},
mrnumber = {2059258},
zbl = {1080.18001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a9/}
}
Močkoř, Jiří. Complete subobjects of fuzzy sets over $MV$-algebras. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 379-392. http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a9/