The generalized Holditch theorem for the homothetic motions on the planar kinematics
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 337-340
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
W. Blaschke and H. R. Müller [4, p. 142] have given the following theorem as a generalization of the classic Holditch Theorem: Let $E/E^{\prime }$ be a 1-parameter closed planar Euclidean motion with the rotation number $\nu $ and the period $T$. Under the motion $E/E^{\prime }$, let two points $A = (0, 0)$, $B = (a + b, 0) \in E$ trace the curves $k_A, k_B \subset E^{\prime }$ and let $F_A, F_B$ be their orbit areas, respectively. If $F_X$ is the orbit area of the orbit curve $k$ of the point $X = (a, 0)$ which is collinear with points $A$ and $B$ then \[ F_X = {[aF_B + bF_A] \over a + b} - \pi \nu a b. \] In this paper, under the 1-parameter closed planar homothetic motion with the homothetic scale $ h = h (t)$, the generalization given above by W. Blaschke and H. R. Müller is expressed and \[ F_X = {[aF_B + bF_A]\over a + b} - h^2 (t_0) \pi \nu a b, \] is obtained, where $\exists t_0 \in [0, T]$.
@article{CMJ_2004__54_2_a5,
author = {Kuruo\u{g}lu, N. and Y\"uce, S.},
title = {The generalized {Holditch} theorem for the homothetic motions on the planar kinematics},
journal = {Czechoslovak Mathematical Journal},
pages = {337--340},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2004},
mrnumber = {2059254},
zbl = {1080.53011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a5/}
}
TY - JOUR AU - Kuruoğlu, N. AU - Yüce, S. TI - The generalized Holditch theorem for the homothetic motions on the planar kinematics JO - Czechoslovak Mathematical Journal PY - 2004 SP - 337 EP - 340 VL - 54 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a5/ LA - en ID - CMJ_2004__54_2_a5 ER -
Kuruoğlu, N.; Yüce, S. The generalized Holditch theorem for the homothetic motions on the planar kinematics. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 337-340. http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a5/