The generalized Holditch theorem for the homothetic motions on the planar kinematics
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 337-340.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

W. Blaschke and H. R. Müller [4, p. 142] have given the following theorem as a generalization of the classic Holditch Theorem: Let $E/E^{\prime }$ be a 1-parameter closed planar Euclidean motion with the rotation number $\nu $ and the period $T$. Under the motion $E/E^{\prime }$, let two points $A = (0, 0)$, $B = (a + b, 0) \in E$ trace the curves $k_A, k_B \subset E^{\prime }$ and let $F_A, F_B$ be their orbit areas, respectively. If $F_X$ is the orbit area of the orbit curve $k$ of the point $X = (a, 0)$ which is collinear with points $A$ and $B$ then \[ F_X = {[aF_B + bF_A] \over a + b} - \pi \nu a b. \] In this paper, under the 1-parameter closed planar homothetic motion with the homothetic scale $ h = h (t)$, the generalization given above by W. Blaschke and H. R. Müller is expressed and \[ F_X = {[aF_B + bF_A]\over a + b} - h^2 (t_0) \pi \nu a b, \] is obtained, where $\exists t_0 \in [0, T]$.
Classification : 53A17
Keywords: Holditch Theorem; homothetic motion; Steiner formula
@article{CMJ_2004__54_2_a5,
     author = {Kuruo\u{g}lu, N. and Y\"uce, S.},
     title = {The generalized {Holditch} theorem for the homothetic motions on the planar kinematics},
     journal = {Czechoslovak Mathematical Journal},
     pages = {337--340},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2004},
     mrnumber = {2059254},
     zbl = {1080.53011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a5/}
}
TY  - JOUR
AU  - Kuruoğlu, N.
AU  - Yüce, S.
TI  - The generalized Holditch theorem for the homothetic motions on the planar kinematics
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 337
EP  - 340
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a5/
LA  - en
ID  - CMJ_2004__54_2_a5
ER  - 
%0 Journal Article
%A Kuruoğlu, N.
%A Yüce, S.
%T The generalized Holditch theorem for the homothetic motions on the planar kinematics
%J Czechoslovak Mathematical Journal
%D 2004
%P 337-340
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a5/
%G en
%F CMJ_2004__54_2_a5
Kuruoğlu, N.; Yüce, S. The generalized Holditch theorem for the homothetic motions on the planar kinematics. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 337-340. http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a5/