On some interpolation rules for lattice ordered groups
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 499-507
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $\alpha $ be an infinite cardinal. In this paper we define an interpolation rule $\mathop {\mathrm IR}(\alpha )$ for lattice ordered groups. We denote by $C (\alpha )$ the class of all lattice ordered groups satisfying $\mathop {\mathrm IR}(\alpha )$, and prove that $C (\alpha )$ is a radical class.
Classification :
06F15, 20F60
Keywords: lattice ordered group; interpolation rule; radical class
Keywords: lattice ordered group; interpolation rule; radical class
@article{CMJ_2004__54_2_a20,
author = {Jakub{\'\i}k, J\'an},
title = {On some interpolation rules for lattice ordered groups},
journal = {Czechoslovak Mathematical Journal},
pages = {499--507},
publisher = {mathdoc},
volume = {54},
number = {2},
year = {2004},
mrnumber = {2059269},
zbl = {1080.06028},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a20/}
}
Jakubík, Ján. On some interpolation rules for lattice ordered groups. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 499-507. http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a20/