On properties of a graph that depend on its distance function
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 445-456.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

If $G$ is a connected graph with distance function $d$, then by a step in $G$ is meant an ordered triple $(u, x, v)$ of vertices of $G$ such that $d(u, x) = 1$ and $d(u, v) = d(x, v) + 1$. A characterization of the set of all steps in a connected graph was published by the present author in 1997. In Section 1 of this paper, a new and shorter proof of that characterization is presented. A stronger result for a certain type of connected graphs is proved in Section 2.
Classification : 05C12, 05C75
Keywords: connected graphs; distance; steps; geodetically smooth graphs
@article{CMJ_2004__54_2_a16,
     author = {Nebesk\'y, Ladislav},
     title = {On properties of a graph that depend on its distance function},
     journal = {Czechoslovak Mathematical Journal},
     pages = {445--456},
     publisher = {mathdoc},
     volume = {54},
     number = {2},
     year = {2004},
     mrnumber = {2059265},
     zbl = {1080.05506},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a16/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - On properties of a graph that depend on its distance function
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 445
EP  - 456
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a16/
LA  - en
ID  - CMJ_2004__54_2_a16
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T On properties of a graph that depend on its distance function
%J Czechoslovak Mathematical Journal
%D 2004
%P 445-456
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a16/
%G en
%F CMJ_2004__54_2_a16
Nebeský, Ladislav. On properties of a graph that depend on its distance function. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 2, pp. 445-456. http://geodesic.mathdoc.fr/item/CMJ_2004__54_2_a16/