Statistical cluster points of sequences in finite dimensional spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 95-102
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper we study the set of statistical cluster points of sequences in $m$-dimensional spaces. We show that some properties of the set of statistical cluster points of the real number sequences remain in force for the sequences in $m$-dimensional spaces too. We also define a notion of $\Gamma $-statistical convergence. A sequence $x$ is $\Gamma $-statistically convergent to a set $C$ if $C$ is a minimal closed set such that for every $\epsilon > 0 $ the set $ \lbrace k\:\rho (C, x_k ) \ge \epsilon \rbrace $ has density zero. It is shown that every statistically bounded sequence is $\Gamma $-statistically convergent. Moreover if a sequence is $\Gamma $-statistically convergent then the limit set is a set of statistical cluster points.
Classification :
11B05, 40A05
Keywords: compact sets; natural density; statistically bounded sequence; statistical cluster point
Keywords: compact sets; natural density; statistically bounded sequence; statistical cluster point
@article{CMJ_2004__54_1_a7,
author = {Pehlivan, S. and G\"uncan, A. and Mamedov, M. A.},
title = {Statistical cluster points of sequences in finite dimensional spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {95--102},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {2004},
mrnumber = {2040222},
zbl = {1045.40004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a7/}
}
TY - JOUR AU - Pehlivan, S. AU - Güncan, A. AU - Mamedov, M. A. TI - Statistical cluster points of sequences in finite dimensional spaces JO - Czechoslovak Mathematical Journal PY - 2004 SP - 95 EP - 102 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a7/ LA - en ID - CMJ_2004__54_1_a7 ER -
Pehlivan, S.; Güncan, A.; Mamedov, M. A. Statistical cluster points of sequences in finite dimensional spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 95-102. http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a7/