Description of simple exceptional sets in the unit ball
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 55-63
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For $ z\in \partial B^n$, the boundary of the unit ball in $\mathbb{C}^n$, let $\Lambda (z)=\lbrace \lambda \:|\lambda |\le 1\rbrace $. If $ f\in \mathbb{O}(B^n)$ then we call $E(f)=\lbrace z\in \partial B^n\:\int _{\Lambda (z)}|f(z)|^2\mathrm{d}\Lambda (z)=\infty \rbrace $ the exceptional set for $f$. In this note we give a tool for describing such sets. Moreover we prove that if $E$ is a $G_\delta $ and $F_\sigma $ subset of the projective $(n-1)$-dimensional space $\mathbb{P}^{n-1}=\mathbb{P}(\mathbb{C}^n)$ then there exists a holomorphic function $f$ in the unit ball $B^n$ so that $E(f)=E$.
@article{CMJ_2004__54_1_a3,
author = {Kot, Piotr},
title = {Description of simple exceptional sets in the unit ball},
journal = {Czechoslovak Mathematical Journal},
pages = {55--63},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {2004},
mrnumber = {2040218},
zbl = {1052.30006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a3/}
}
Kot, Piotr. Description of simple exceptional sets in the unit ball. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 55-63. http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a3/