Multilinear operators on $C(K,X)$ spaces
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 31-54
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Given Banach spaces~ $X$, $Y$ and a compact Hausdorff space~ $K$, we use polymeasures to give necessary conditions for a multilinear operator from $C(K,X)$ into~ $Y$ to be completely continuous (resp.~ unconditionally converging). We deduce necessary and sufficient conditions for~ $X$ to have the Schur property (resp.~ to contain no copy of~ $c_0$), and for~ $K$ to be scattered. This extends results concerning linear operators.
Classification :
46B25, 46G10, 46G25, 47B07, 47H60
Keywords: completely continuous; unconditionally converging; multilinear operators; $C(K, X)$ spaces
Keywords: completely continuous; unconditionally converging; multilinear operators; $C(K, X)$ spaces
@article{CMJ_2004__54_1_a2,
author = {Villanueva, Ignacio},
title = {Multilinear operators on $C(K,X)$ spaces},
journal = {Czechoslovak Mathematical Journal},
pages = {31--54},
publisher = {mathdoc},
volume = {54},
number = {1},
year = {2004},
mrnumber = {2040217},
zbl = {1050.46032},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a2/}
}
Villanueva, Ignacio. Multilinear operators on $C(K,X)$ spaces. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 31-54. http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a2/