Zero-term ranks of real matrices and their preservers
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 183-188.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Zero-term rank of a matrix is the minimum number of lines (rows or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve zero-term rank of the $m \times n$ real matrices. We also obtain combinatorial equivalent condition for the zero-term rank of a real matrix.
Classification : 15A03, 15A04
Keywords: linear operator; zero-term rank; $P, Q, B$-operator
@article{CMJ_2004__54_1_a15,
     author = {Beasley, LeRoy B. and Jun, Young-Bae and Song, Seok-Zun},
     title = {Zero-term ranks of real matrices and their preservers},
     journal = {Czechoslovak Mathematical Journal},
     pages = {183--188},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2004},
     mrnumber = {2040230},
     zbl = {1051.15001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a15/}
}
TY  - JOUR
AU  - Beasley, LeRoy B.
AU  - Jun, Young-Bae
AU  - Song, Seok-Zun
TI  - Zero-term ranks of real matrices and their preservers
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 183
EP  - 188
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a15/
LA  - en
ID  - CMJ_2004__54_1_a15
ER  - 
%0 Journal Article
%A Beasley, LeRoy B.
%A Jun, Young-Bae
%A Song, Seok-Zun
%T Zero-term ranks of real matrices and their preservers
%J Czechoslovak Mathematical Journal
%D 2004
%P 183-188
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a15/
%G en
%F CMJ_2004__54_1_a15
Beasley, LeRoy B.; Jun, Young-Bae; Song, Seok-Zun. Zero-term ranks of real matrices and their preservers. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 183-188. http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a15/