Normal Vietoris implies compactness: a short proof
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 181-182.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

One of the most celebrated results in the theory of hyperspaces says that if the Vietoris topology on the family of all nonempty closed subsets of a given space is normal, then the space is compact (Ivanova-Keesling-Velichko). The known proofs use cardinality arguments and are long. In this paper we present a short proof using known results concerning Hausdorff uniformities.
Classification : 54B20, 54D30, 54E15
Keywords: hyperspaces; Vietoris topology; locally finite topology; Hausdorff metric; compactness; normality; countable compactness
@article{CMJ_2004__54_1_a14,
     author = {Maio, G. Di and Meccariello, E. and Naimpally, S.},
     title = {Normal {Vietoris} implies compactness: a short proof},
     journal = {Czechoslovak Mathematical Journal},
     pages = {181--182},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2004},
     mrnumber = {2040229},
     zbl = {1049.54010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a14/}
}
TY  - JOUR
AU  - Maio, G. Di
AU  - Meccariello, E.
AU  - Naimpally, S.
TI  - Normal Vietoris implies compactness: a short proof
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 181
EP  - 182
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a14/
LA  - en
ID  - CMJ_2004__54_1_a14
ER  - 
%0 Journal Article
%A Maio, G. Di
%A Meccariello, E.
%A Naimpally, S.
%T Normal Vietoris implies compactness: a short proof
%J Czechoslovak Mathematical Journal
%D 2004
%P 181-182
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a14/
%G en
%F CMJ_2004__54_1_a14
Maio, G. Di; Meccariello, E.; Naimpally, S. Normal Vietoris implies compactness: a short proof. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 181-182. http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a14/