Subalgebras and homomorphic images of algebras having the CEP and the WCIP
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 155-160.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In the present paper we consider algebras satisfying both the congruence extension property (briefly the CEP) and the weak congruence intersection property (WCIP for short). We prove that subalgebras of such algebras have these properties. We deduce that a lattice has the CEP and the WCIP if and only if it is a two-element chain. We also show that the class of all congruence modular algebras with the WCIP is closed under the formation of homomorphic images.
Classification : 08A30, 08B10
Keywords: CEP; WCIP; weak congruence; lattice
@article{CMJ_2004__54_1_a12,
     author = {Walendziak, Andrzej},
     title = {Subalgebras and homomorphic images of algebras having the {CEP} and the {WCIP}},
     journal = {Czechoslovak Mathematical Journal},
     pages = {155--160},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2004},
     mrnumber = {2040227},
     zbl = {1049.08002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a12/}
}
TY  - JOUR
AU  - Walendziak, Andrzej
TI  - Subalgebras and homomorphic images of algebras having the CEP and the WCIP
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 155
EP  - 160
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a12/
LA  - en
ID  - CMJ_2004__54_1_a12
ER  - 
%0 Journal Article
%A Walendziak, Andrzej
%T Subalgebras and homomorphic images of algebras having the CEP and the WCIP
%J Czechoslovak Mathematical Journal
%D 2004
%P 155-160
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a12/
%G en
%F CMJ_2004__54_1_a12
Walendziak, Andrzej. Subalgebras and homomorphic images of algebras having the CEP and the WCIP. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 155-160. http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a12/