The directed geodetic structure of a strong digraph
Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 1-8.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

By a ternary structure we mean an ordered pair $(U_0, T_0)$, where $U_0$ is a finite nonempty set and $T_0$ is a ternary relation on $U_0$. A ternary structure $(U_0, T_0)$ is called here a directed geodetic structure if there exists a strong digraph $D$ with the properties that $V(D) = U_0$ and \[ T_0(u, v, w)\quad \text{if} \text{and} \text{only} \text{if}\quad d_D(u, v) + d_D(v, w) = d_D(u, w) \] for all $u, v, w \in U_0$, where $d_D$ denotes the (directed) distance function in $D$. It is proved in this paper that there exists no sentence ${\mathbf s}$ of the language of the first-order logic such that a ternary structure is a directed geodetic structure if and only if it satisfies ${\mathbf s}$.
Classification : 03C13, 05C12, 05C20
Keywords: strong digraph; directed distance; ternary relation; finite structure
@article{CMJ_2004__54_1_a0,
     author = {Nebesk\'y, Ladislav},
     title = {The directed geodetic structure of a strong digraph},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2004},
     mrnumber = {2040215},
     zbl = {1045.05039},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a0/}
}
TY  - JOUR
AU  - Nebeský, Ladislav
TI  - The directed geodetic structure of a strong digraph
JO  - Czechoslovak Mathematical Journal
PY  - 2004
SP  - 1
EP  - 8
VL  - 54
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a0/
LA  - en
ID  - CMJ_2004__54_1_a0
ER  - 
%0 Journal Article
%A Nebeský, Ladislav
%T The directed geodetic structure of a strong digraph
%J Czechoslovak Mathematical Journal
%D 2004
%P 1-8
%V 54
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a0/
%G en
%F CMJ_2004__54_1_a0
Nebeský, Ladislav. The directed geodetic structure of a strong digraph. Czechoslovak Mathematical Journal, Tome 54 (2004) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/CMJ_2004__54_1_a0/