Contact elements on fibered manifolds
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1017-1030.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_{k,l}^{r,s,q} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_{k,l}^{r,s,q} Y$ into itself and of $T(K_{k,l}^{r,s,q} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_{k,l}^{r,s,q} Y$.
Classification : 53A55, 58A20
Keywords: jet of fibered manifold morphism; contact element; Weil bundle; natural operator
@article{CMJ_2003__53_4_a18,
     author = {Kol\'a\v{r}, Ivan and Mikulski, W{\l}odzimierz M.},
     title = {Contact elements on fibered manifolds},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1017--1030},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2003},
     mrnumber = {2018847},
     zbl = {1080.58002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a18/}
}
TY  - JOUR
AU  - Kolář, Ivan
AU  - Mikulski, Włodzimierz M.
TI  - Contact elements on fibered manifolds
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 1017
EP  - 1030
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a18/
LA  - en
ID  - CMJ_2003__53_4_a18
ER  - 
%0 Journal Article
%A Kolář, Ivan
%A Mikulski, Włodzimierz M.
%T Contact elements on fibered manifolds
%J Czechoslovak Mathematical Journal
%D 2003
%P 1017-1030
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a18/
%G en
%F CMJ_2003__53_4_a18
Kolář, Ivan; Mikulski, Włodzimierz M. Contact elements on fibered manifolds. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1017-1030. http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a18/