Contact elements on fibered manifolds
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1017-1030
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For every product preserving bundle functor $T^\mu $ on fibered manifolds, we describe the underlying functor of any order $(r,s,q), s\ge r\le q$. We define the bundle $K_{k,l}^{r,s,q} Y$ of $(k,l)$-dimensional contact elements of the order $(r,s,q)$ on a fibered manifold $Y$ and we characterize its elements geometrically. Then we study the bundle of general contact elements of type $\mu $. We also determine all natural transformations of $K_{k,l}^{r,s,q} Y$ into itself and of $T(K_{k,l}^{r,s,q} Y)$ into itself and we find all natural operators lifting projectable vector fields and horizontal one-forms from $Y$ to $K_{k,l}^{r,s,q} Y$.
Classification :
53A55, 58A20
Keywords: jet of fibered manifold morphism; contact element; Weil bundle; natural operator
Keywords: jet of fibered manifold morphism; contact element; Weil bundle; natural operator
@article{CMJ_2003__53_4_a18,
author = {Kol\'a\v{r}, Ivan and Mikulski, W{\l}odzimierz M.},
title = {Contact elements on fibered manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {1017--1030},
publisher = {mathdoc},
volume = {53},
number = {4},
year = {2003},
mrnumber = {2018847},
zbl = {1080.58002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a18/}
}
Kolář, Ivan; Mikulski, Włodzimierz M. Contact elements on fibered manifolds. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1017-1030. http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a18/