On Pettis integrability
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1009-1015
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _{\infty }$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.
Classification :
28B05, 46G10
Keywords: Pettis integrable function space; copy of $c_0$; copy of $\ell _{\infty }$; countably additive vector measure; WRNP; CRP
Keywords: Pettis integrable function space; copy of $c_0$; copy of $\ell _{\infty }$; countably additive vector measure; WRNP; CRP
@article{CMJ_2003__53_4_a17,
author = {Ferrando, J. C.},
title = {On {Pettis} integrability},
journal = {Czechoslovak Mathematical Journal},
pages = {1009--1015},
publisher = {mathdoc},
volume = {53},
number = {4},
year = {2003},
mrnumber = {2018846},
zbl = {1080.46515},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a17/}
}
Ferrando, J. C. On Pettis integrability. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1009-1015. http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a17/