On Pettis integrability
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1009-1015.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Assuming that $(\Omega , \Sigma , \mu )$ is a complete probability space and $X$ a Banach space, in this paper we investigate the problem of the $X$-inheritance of certain copies of $c_0$ or $\ell _{\infty }$ in the linear space of all [classes of] $X$-valued $\mu $-weakly measurable Pettis integrable functions equipped with the usual semivariation norm.
Classification : 28B05, 46G10
Keywords: Pettis integrable function space; copy of $c_0$; copy of $\ell _{\infty }$; countably additive vector measure; WRNP; CRP
@article{CMJ_2003__53_4_a17,
     author = {Ferrando, J. C.},
     title = {On {Pettis} integrability},
     journal = {Czechoslovak Mathematical Journal},
     pages = {1009--1015},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2003},
     mrnumber = {2018846},
     zbl = {1080.46515},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a17/}
}
TY  - JOUR
AU  - Ferrando, J. C.
TI  - On Pettis integrability
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 1009
EP  - 1015
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a17/
LA  - en
ID  - CMJ_2003__53_4_a17
ER  - 
%0 Journal Article
%A Ferrando, J. C.
%T On Pettis integrability
%J Czechoslovak Mathematical Journal
%D 2003
%P 1009-1015
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a17/
%G en
%F CMJ_2003__53_4_a17
Ferrando, J. C. On Pettis integrability. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 1009-1015. http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a17/