Achromatic number of $K_5 \times K_n$ for small $n$
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 963-988.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The achromatic number of a graph $G$ is the maximum number of colours in a proper vertex colouring of $G$ such that for any two distinct colours there is an edge of $G$ incident with vertices of those two colours. We determine the achromatic number of the Cartesian product of $K_5$ and $K_n$ for all $n \le 24$.
Classification : 05C15
Keywords: complete vertex colouring; achromatic number; Cartesian product; complete graph
@article{CMJ_2003__53_4_a14,
     author = {Hor\v{n}\'ak, Mirko and P\v{c}ola, \v{S}tefan},
     title = {Achromatic number of $K_5 \times K_n$ for small $n$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {963--988},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2003},
     mrnumber = {2018843},
     zbl = {1080.05510},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a14/}
}
TY  - JOUR
AU  - Horňák, Mirko
AU  - Pčola, Štefan
TI  - Achromatic number of $K_5 \times K_n$ for small $n$
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 963
EP  - 988
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a14/
LA  - en
ID  - CMJ_2003__53_4_a14
ER  - 
%0 Journal Article
%A Horňák, Mirko
%A Pčola, Štefan
%T Achromatic number of $K_5 \times K_n$ for small $n$
%J Czechoslovak Mathematical Journal
%D 2003
%P 963-988
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a14/
%G en
%F CMJ_2003__53_4_a14
Horňák, Mirko; Pčola, Štefan. Achromatic number of $K_5 \times K_n$ for small $n$. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 963-988. http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a14/