Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 917-924.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let ${\mathcal{M}}_g$ be the moduli space of smooth complex projective curves of genus $g$. Here we prove that the subset of ${\mathcal{M}}_g$ formed by all curves for which some Brill-Noether locus has dimension larger than the expected one has codimension at least two in ${\mathcal{M}}_g$. As an application we show that if $X \in {\mathcal{M}}_g$ is defined over ${\mathbb {R}}$, then there exists a low degree pencil $u\: X \rightarrow {\mathbb {P}}^1$ defined over ${\mathbb {R}}$.
Classification : 14H10, 14H51, 14P99
Keywords: moduli space of curves; gonality; real curves; Brill-Noether theory; real algebraic curves; real Riemann surfaces
@article{CMJ_2003__53_4_a10,
     author = {Ballico, E.},
     title = {Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves},
     journal = {Czechoslovak Mathematical Journal},
     pages = {917--924},
     publisher = {mathdoc},
     volume = {53},
     number = {4},
     year = {2003},
     mrnumber = {2018839},
     zbl = {1080.14518},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a10/}
}
TY  - JOUR
AU  - Ballico, E.
TI  - Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 917
EP  - 924
VL  - 53
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a10/
LA  - en
ID  - CMJ_2003__53_4_a10
ER  - 
%0 Journal Article
%A Ballico, E.
%T Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves
%J Czechoslovak Mathematical Journal
%D 2003
%P 917-924
%V 53
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a10/
%G en
%F CMJ_2003__53_4_a10
Ballico, E. Codimension 1 subvarieties $\scr M\sb g$ and real gonality of real curves. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 4, pp. 917-924. http://geodesic.mathdoc.fr/item/CMJ_2003__53_4_a10/