Matrix rings with summand intersection property
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 621-626.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A ring $R$ has right SIP (SSP) if the intersection (sum) of two direct summands of $R$ is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of $R$ by $M$ has SIP if and only if $R$ has SIP and $(1-e)Me=0$ for every idempotent $e$ in $R$. Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP.
Classification : 16D10, 16D15, 16D70, 16S50
Keywords: modules; Summand Intersection Property; Morita invariant
@article{CMJ_2003__53_3_a9,
     author = {Karabacak, F. and Tercan, A.},
     title = {Matrix rings with summand intersection property},
     journal = {Czechoslovak Mathematical Journal},
     pages = {621--626},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2003},
     mrnumber = {2000057},
     zbl = {1080.16503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a9/}
}
TY  - JOUR
AU  - Karabacak, F.
AU  - Tercan, A.
TI  - Matrix rings with summand intersection property
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 621
EP  - 626
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a9/
LA  - en
ID  - CMJ_2003__53_3_a9
ER  - 
%0 Journal Article
%A Karabacak, F.
%A Tercan, A.
%T Matrix rings with summand intersection property
%J Czechoslovak Mathematical Journal
%D 2003
%P 621-626
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a9/
%G en
%F CMJ_2003__53_3_a9
Karabacak, F.; Tercan, A. Matrix rings with summand intersection property. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 621-626. http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a9/