Positive periodic solutions of $N$-species neutral delay systems
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 561-570
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we employ some new techniques to study the existence of positive periodic solution of $n$-species neutral delay system \[ N^{\prime }_i(t)=N_i(t)\biggl [a_i(t)-\sum _{j=1}^n\beta _{ij}(t)N_j(t)- \sum _{j=1}^nb_{ij}(t)N_j(t-\tau _{ij}(t))-\sum _{j=1}^nc_{ij}(t) N^{\prime }_j(t-\tau _{ij}(t))\biggr ]. \] As a corollary, we answer an open problem proposed by Y. Kuang.
Classification :
34A12, 34C25, 34K13, 34K15, 34K40
Keywords: positive periodic solutions; existence; neutral delay system
Keywords: positive periodic solutions; existence; neutral delay system
@article{CMJ_2003__53_3_a5,
author = {Fang, Hui},
title = {Positive periodic solutions of $N$-species neutral delay systems},
journal = {Czechoslovak Mathematical Journal},
pages = {561--570},
publisher = {mathdoc},
volume = {53},
number = {3},
year = {2003},
mrnumber = {2000053},
zbl = {1080.34530},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a5/}
}
Fang, Hui. Positive periodic solutions of $N$-species neutral delay systems. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 561-570. http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a5/