Commutativity of rings with constraints involving a subset
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 545-559.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Suppose that $R$ is an associative ring with identity $1$, $J(R)$ the Jacobson radical of $R$, and $N(R)$ the set of nilpotent elements of $R$. Let $m \ge 1$ be a fixed positive integer and $R$ an $m$-torsion-free ring with identity $1$. The main result of the present paper asserts that $R$ is commutative if $R$ satisfies both the conditions (i) $[x^m,y^m] = 0$ for all $x,y \in R \setminus J(R)$ and (ii) $[(xy)^m + y^mx^m, x] = 0 = [(yx)^m + x^my^m, x]$, for all $x,y \in R \setminus J(R)$. This result is also valid if (i) and (ii) are replaced by (i)$^{\prime }$ $[x^m,y^m] = 0$ for all $x,y \in R \setminus N(R)$ and (ii)$^{\prime }$ $[(xy)^m + y^m x^m, x] = 0 = [(yx)^m + x^m y^m, x]$ for all $x,y \in R\backslash N(R) $. Other similar commutativity theorems are also discussed.
Classification : 16R50, 16U70, 16U80, 16U99
Keywords: commutativity theorems; Jacobson radicals; nilpotent elements; periodic rings; torsion-free rings
@article{CMJ_2003__53_3_a4,
     author = {Khan, Moharram A.},
     title = {Commutativity of rings with constraints involving a subset},
     journal = {Czechoslovak Mathematical Journal},
     pages = {545--559},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2003},
     mrnumber = {2000052},
     zbl = {1080.16508},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a4/}
}
TY  - JOUR
AU  - Khan, Moharram A.
TI  - Commutativity of rings with constraints involving a subset
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 545
EP  - 559
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a4/
LA  - en
ID  - CMJ_2003__53_3_a4
ER  - 
%0 Journal Article
%A Khan, Moharram A.
%T Commutativity of rings with constraints involving a subset
%J Czechoslovak Mathematical Journal
%D 2003
%P 545-559
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a4/
%G en
%F CMJ_2003__53_3_a4
Khan, Moharram A. Commutativity of rings with constraints involving a subset. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 545-559. http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a4/