Higher degrees of distributivity in $MV$-algebras
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 641-653.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper we deal with the of an $MV$-algebra $\mathcal A$, where $\alpha $ and $\beta $ are nonzero cardinals. It is proved that if $\mathcal A$ is singular and $(\alpha,2)$-distributive, then it is . We show that if $\mathcal A$ is complete then it can be represented as a direct product of $MV$-algebras which are homogeneous with respect to higher degrees of distributivity.
Classification : 06D10, 06D35, 06F20
Keywords: $MV$-algebra; archimedean $MV$-algebra; completeness; singular $MV$-algebra; higher degrees of distributivity
@article{CMJ_2003__53_3_a12,
     author = {Jakub{\'\i}k, J\'an},
     title = {Higher degrees of distributivity in $MV$-algebras},
     journal = {Czechoslovak Mathematical Journal},
     pages = {641--653},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2003},
     mrnumber = {2000060},
     zbl = {1080.06014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a12/}
}
TY  - JOUR
AU  - Jakubík, Ján
TI  - Higher degrees of distributivity in $MV$-algebras
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 641
EP  - 653
VL  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a12/
LA  - en
ID  - CMJ_2003__53_3_a12
ER  - 
%0 Journal Article
%A Jakubík, Ján
%T Higher degrees of distributivity in $MV$-algebras
%J Czechoslovak Mathematical Journal
%D 2003
%P 641-653
%V 53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a12/
%G en
%F CMJ_2003__53_3_a12
Jakubík, Ján. Higher degrees of distributivity in $MV$-algebras. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 3, pp. 641-653. http://geodesic.mathdoc.fr/item/CMJ_2003__53_3_a12/