On the jump number of lexicographic sums of ordered sets
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 343-349
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
Let $Q$ be the lexicographic sum of finite ordered sets $Q_x$ over a finite ordered set $P$. For some $P$ we can give a formula for the jump number of $Q$ in terms of the jump numbers of $Q_x$ and $P$, that is, $s(Q)=s(P)+ \sum _{x\in P} s(Q_x)$, where $s(X)$ denotes the jump number of an ordered set $X$. We first show that $w(P)-1+\sum _{x\in P} s(Q_x)\le s(Q) \le s(P)+ \sum _{x\in P} s(Q_x)$, where $w(X)$ denotes the width of an ordered set $X$. Consequently, if $P$ is a Dilworth ordered set, that is, $s(P) = w(P)-1$, then the formula holds. We also show that it holds again if $P$ is bipartite. Finally, we prove that the lexicographic sum of certain jump-critical ordered sets is also jump-critical.
Classification :
06A07
Keywords: ordered set; jump (setup) number; lexicographic sum; jump-critical
Keywords: ordered set; jump (setup) number; lexicographic sum; jump-critical
@article{CMJ_2003__53_2_a9,
author = {Jung, Hyung Chan and Lee, Jeh Gwon},
title = {On the jump number of lexicographic sums of ordered sets},
journal = {Czechoslovak Mathematical Journal},
pages = {343--349},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2003},
mrnumber = {1983456},
zbl = {1024.06001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a9/}
}
Jung, Hyung Chan; Lee, Jeh Gwon. On the jump number of lexicographic sums of ordered sets. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 343-349. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a9/