Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 319-342.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman’s Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.
Classification : 11B75, 37B05, 37B20, 54C60, 54H20
Keywords: flow; Stone-Čech compactification; Hindman’s theorem
@article{CMJ_2003__53_2_a8,
     author = {Ball, Richard N. and Hagler, James N.},
     title = {Flow compactifications of nondiscrete monoids, idempotents and {Hindman{\textquoteright}s} theorem},
     journal = {Czechoslovak Mathematical Journal},
     pages = {319--342},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2003},
     mrnumber = {1983455},
     zbl = {1026.54043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a8/}
}
TY  - JOUR
AU  - Ball, Richard N.
AU  - Hagler, James N.
TI  - Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 319
EP  - 342
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a8/
LA  - en
ID  - CMJ_2003__53_2_a8
ER  - 
%0 Journal Article
%A Ball, Richard N.
%A Hagler, James N.
%T Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem
%J Czechoslovak Mathematical Journal
%D 2003
%P 319-342
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a8/
%G en
%F CMJ_2003__53_2_a8
Ball, Richard N.; Hagler, James N. Flow compactifications of nondiscrete monoids, idempotents and Hindman’s theorem. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 319-342. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a8/