Spherical and clockwise spherical graphs
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 295-309.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The main subject of our study are spherical (weakly spherical) graphs, i.e. connected graphs fulfilling the condition that in each interval to each vertex there is exactly one (at least one, respectively) antipodal vertex. Our analysis concerns properties of these graphs especially in connection with convexity and also with hypercube graphs. We deal e.g. with the problem under what conditions all intervals of a spherical graph induce hypercubes and find a new characterization of hypercubes: $G$ is a hypercube if and only if $G$ is spherical and bipartite.
Classification : 05C12, 05C65, 05C75
Keywords: spherical graph; hypercube; antipodal vertex; interval
@article{CMJ_2003__53_2_a6,
     author = {Berrachedi, Abdelhafid and Havel, Ivan and Mulder, Henry Martyn},
     title = {Spherical and clockwise spherical graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {295--309},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2003},
     mrnumber = {1983453},
     zbl = {1021.05085},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a6/}
}
TY  - JOUR
AU  - Berrachedi, Abdelhafid
AU  - Havel, Ivan
AU  - Mulder, Henry Martyn
TI  - Spherical and clockwise spherical graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 295
EP  - 309
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a6/
LA  - en
ID  - CMJ_2003__53_2_a6
ER  - 
%0 Journal Article
%A Berrachedi, Abdelhafid
%A Havel, Ivan
%A Mulder, Henry Martyn
%T Spherical and clockwise spherical graphs
%J Czechoslovak Mathematical Journal
%D 2003
%P 295-309
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a6/
%G en
%F CMJ_2003__53_2_a6
Berrachedi, Abdelhafid; Havel, Ivan; Mulder, Henry Martyn. Spherical and clockwise spherical graphs. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 295-309. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a6/