Equivalence bimodule between non-commutative tori
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 289-294
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The non-commutative torus $C^*(\mathbb{Z}^n,\omega )$ is realized as the $C^*$-algebra of sections of a locally trivial $C^*$-algebra bundle over $\widehat{S_{\omega }}$ with fibres isomorphic to $C^*(\mathbb{Z}^n/S_{\omega }, \omega _1)$ for a totally skew multiplier $\omega _1$ on $\mathbb{Z}^n/S_{\omega }$. D. Poguntke [9] proved that $A_{\omega }$ is stably isomorphic to $C(\widehat{S_{\omega }}) \otimes C^*(\mathbb{Z}^n/S_{\omega }, \omega _1) \cong C(\widehat{S_{\omega }}) \otimes A_{\varphi } \otimes M_{kl}(\mathbb{C})$ for a simple non-commutative torus $A_{\varphi }$ and an integer $kl$. It is well-known that a stable isomorphism of two separable $C^*$-algebras is equivalent to the existence of equivalence bimodule between them. We construct an $A_{\omega }$-$C(\widehat{S_{\omega }}) \otimes A_{\varphi }$-equivalence bimodule.
Classification :
46L05, 46L87, 46L89, 55R15
Keywords: Morita equivalent; twisted group $C^*$-algebra; crossed product
Keywords: Morita equivalent; twisted group $C^*$-algebra; crossed product
@article{CMJ_2003__53_2_a5,
author = {Oh, Sei-Qwon and Park, Chun-Gil},
title = {Equivalence bimodule between non-commutative tori},
journal = {Czechoslovak Mathematical Journal},
pages = {289--294},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2003},
mrnumber = {1983452},
zbl = {1028.46102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a5/}
}
Oh, Sei-Qwon; Park, Chun-Gil. Equivalence bimodule between non-commutative tori. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 289-294. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a5/