The geography of simply-connected symplectic manifolds
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 265-276
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
By using the Seiberg-Witten invariant we show that the region under the Noether line in the lattice domain $\mathbb{Z}\times \mathbb{Z}$ is covered by minimal, simply connected, symplectic 4-manifolds.
Classification :
37J99, 53D05, 53D35, 57N13, 57R17, 57R57, 58F05
Keywords: Seiberg-Witten invariant; geography of symplectic 4-manifold
Keywords: Seiberg-Witten invariant; geography of symplectic 4-manifold
@article{CMJ_2003__53_2_a3,
author = {Cho, Mi Sung and Cho, Yong Seung},
title = {The geography of simply-connected symplectic manifolds},
journal = {Czechoslovak Mathematical Journal},
pages = {265--276},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2003},
mrnumber = {1983450},
zbl = {1039.53097},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a3/}
}
Cho, Mi Sung; Cho, Yong Seung. The geography of simply-connected symplectic manifolds. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 265-276. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a3/