Generating singularities of solutions of quasilinear elliptic equations using Wolff’s potential
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 429-435
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We consider a quasilinear elliptic problem whose left-hand side is a Leray-Lions operator of $p$-Laplacian type. If $p\gamma $ and the right-hand side is a Radon measure with singularity of order $\gamma $ at $x_0\in \Omega $, then any supersolution in $W_{\mathrm loc}^{1,p}(\Omega )$ has singularity of order at least $\frac{(\gamma -p)}{(p-1)}$ at $x_0$. In the proof we exploit a pointwise estimate of $\mathcal A$-superharmonic solutions, due to Kilpeläinen and Malý, which involves Wolff’s potential of Radon’s measure.
Classification :
31B05, 35A20, 35B05, 35J60
Keywords: quasilinear elliptic; singularity; Sobolev function
Keywords: quasilinear elliptic; singularity; Sobolev function
@article{CMJ_2003__53_2_a16,
author = {\v{Z}ubrini\'c, Darko},
title = {Generating singularities of solutions of quasilinear elliptic equations using {Wolff{\textquoteright}s} potential},
journal = {Czechoslovak Mathematical Journal},
pages = {429--435},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2003},
mrnumber = {1983463},
zbl = {1022.31005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a16/}
}
TY - JOUR AU - Žubrinić, Darko TI - Generating singularities of solutions of quasilinear elliptic equations using Wolff’s potential JO - Czechoslovak Mathematical Journal PY - 2003 SP - 429 EP - 435 VL - 53 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a16/ LA - en ID - CMJ_2003__53_2_a16 ER -
Žubrinić, Darko. Generating singularities of solutions of quasilinear elliptic equations using Wolff’s potential. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 429-435. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a16/