Preduals of spaces of vector-valued holomorphic functions
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 365-376.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For $U$ a balanced open subset of a Fréchet space $E$ and $F$ a dual-Banach space we introduce the topology $\tau _\gamma $ on the space ${\mathcal H}(U,F)$ of holomorphic functions from $U$ into $F$. This topology allows us to construct a predual for $({\mathcal H}(U,F),\tau _\delta )$ which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions.
Classification : 46A04, 46A20, 46A25, 46A32, 46E40, 46G20, 46G25
Keywords: holomorphic functions; Fréchet spaces; preduals
@article{CMJ_2003__53_2_a11,
     author = {Boyd, Christopher},
     title = {Preduals of spaces of vector-valued holomorphic functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {365--376},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2003},
     mrnumber = {1983458},
     zbl = {1028.46063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a11/}
}
TY  - JOUR
AU  - Boyd, Christopher
TI  - Preduals of spaces of vector-valued holomorphic functions
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 365
EP  - 376
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a11/
LA  - en
ID  - CMJ_2003__53_2_a11
ER  - 
%0 Journal Article
%A Boyd, Christopher
%T Preduals of spaces of vector-valued holomorphic functions
%J Czechoslovak Mathematical Journal
%D 2003
%P 365-376
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a11/
%G en
%F CMJ_2003__53_2_a11
Boyd, Christopher. Preduals of spaces of vector-valued holomorphic functions. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 365-376. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a11/