Preduals of spaces of vector-valued holomorphic functions
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 365-376
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For $U$ a balanced open subset of a Fréchet space $E$ and $F$ a dual-Banach space we introduce the topology $\tau _\gamma $ on the space ${\mathcal H}(U,F)$ of holomorphic functions from $U$ into $F$. This topology allows us to construct a predual for $({\mathcal H}(U,F),\tau _\delta )$ which in turn allows us to investigate the topological structure of spaces of vector-valued holomorphic functions. In particular, we are able to give necessary and sufficient conditions for the equivalence and compatibility of various topologies on spaces of vector-valued holomorphic functions.
Classification :
46A04, 46A20, 46A25, 46A32, 46E40, 46G20, 46G25
Keywords: holomorphic functions; Fréchet spaces; preduals
Keywords: holomorphic functions; Fréchet spaces; preduals
@article{CMJ_2003__53_2_a11,
author = {Boyd, Christopher},
title = {Preduals of spaces of vector-valued holomorphic functions},
journal = {Czechoslovak Mathematical Journal},
pages = {365--376},
publisher = {mathdoc},
volume = {53},
number = {2},
year = {2003},
mrnumber = {1983458},
zbl = {1028.46063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a11/}
}
Boyd, Christopher. Preduals of spaces of vector-valued holomorphic functions. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 365-376. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a11/