Domination in bipartite graphs and in their complements
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 241-247.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The domatic numbers of a graph $G$ and of its complement $\bar{G}$ were studied by J. E. Dunbar, T. W. Haynes and M. A. Henning. They suggested four open problems. We will solve the following ones: Characterize bipartite graphs $G$ having $d(G) = d(\bar{G})$. Further, we will present a partial solution to the problem: Is it true that if $G$ is a graph satisfying $d(G) = d(\bar{G})$, then $\gamma (G) = \gamma (\bar{G})$? Finally, we prove an existence theorem concerning the total domatic number of a graph and of its complement.
Classification : 05C69
Keywords: bipartite graph; complement of a graph; domatic number
@article{CMJ_2003__53_2_a1,
     author = {Zelinka, Bohdan},
     title = {Domination in bipartite graphs and in their complements},
     journal = {Czechoslovak Mathematical Journal},
     pages = {241--247},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2003},
     mrnumber = {1983448},
     zbl = {1021.05074},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a1/}
}
TY  - JOUR
AU  - Zelinka, Bohdan
TI  - Domination in bipartite graphs and in their complements
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 241
EP  - 247
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a1/
LA  - en
ID  - CMJ_2003__53_2_a1
ER  - 
%0 Journal Article
%A Zelinka, Bohdan
%T Domination in bipartite graphs and in their complements
%J Czechoslovak Mathematical Journal
%D 2003
%P 241-247
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a1/
%G en
%F CMJ_2003__53_2_a1
Zelinka, Bohdan. Domination in bipartite graphs and in their complements. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 241-247. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a1/