The basis number of some special non-planar graphs
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 225-240.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The basis number of a graph $G$ was defined by Schmeichel to be the least integer $h$ such that $G$ has an $h$-fold basis for its cycle space. He proved that for $m,n\ge 5$, the basis number $b(K_{m,n})$ of the complete bipartite graph $K_{m,n}$ is equal to 4 except for $K_{6,10}$, $K_{5,n}$ and $K_{6,n}$ with $n=5,6,7,8$. We determine the basis number of some particular non-planar graphs such as $K_{5,n}$ and $K_{6,n}$, $n=5,6,7,8$, and $r$-cages for $r=5,6,7,8$, and the Robertson graph.
Classification : 05C35, 05C38
Keywords: graphs; basis number; cycle space; basis
@article{CMJ_2003__53_2_a0,
     author = {Alsardary, Salar Y. and Ali, Ali A.},
     title = {The basis number of some special non-planar graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {225--240},
     publisher = {mathdoc},
     volume = {53},
     number = {2},
     year = {2003},
     mrnumber = {1983447},
     zbl = {1021.05053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a0/}
}
TY  - JOUR
AU  - Alsardary, Salar Y.
AU  - Ali, Ali A.
TI  - The basis number of some special non-planar graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 225
EP  - 240
VL  - 53
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a0/
LA  - en
ID  - CMJ_2003__53_2_a0
ER  - 
%0 Journal Article
%A Alsardary, Salar Y.
%A Ali, Ali A.
%T The basis number of some special non-planar graphs
%J Czechoslovak Mathematical Journal
%D 2003
%P 225-240
%V 53
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a0/
%G en
%F CMJ_2003__53_2_a0
Alsardary, Salar Y.; Ali, Ali A. The basis number of some special non-planar graphs. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 2, pp. 225-240. http://geodesic.mathdoc.fr/item/CMJ_2003__53_2_a0/