On a two-point boundary value problem for second order singular equations
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 19-43
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The problem on the existence of a positive in the interval $\mathopen ]a,b\mathclose [$ solution of the boundary value problem \[ u^{\prime \prime }=f(t,u)+g(t,u)u^{\prime };\quad u(a+)=0, \quad u(b-)=0 \] is considered, where the functions $f$ and $g\:\mathopen ]a,b\mathclose [\times \mathopen ]0,+\infty \mathclose [ \rightarrow \mathbb R$ satisfy the local Carathéodory conditions. The possibility for the functions $f$ and $g$ to have singularities in the first argument (for $t=a$ and $t=b$) and in the phase variable (for $u=0$) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.
Classification :
34B10, 34B16, 34B18
Keywords: second order singular equation; two-point boundary value problem; solvability
Keywords: second order singular equation; two-point boundary value problem; solvability
@article{CMJ_2003__53_1_a2,
author = {Lomtatidze, A. and Torres, P.},
title = {On a two-point boundary value problem for second order singular equations},
journal = {Czechoslovak Mathematical Journal},
pages = {19--43},
publisher = {mathdoc},
volume = {53},
number = {1},
year = {2003},
mrnumber = {1961996},
zbl = {1023.34011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_1_a2/}
}
TY - JOUR AU - Lomtatidze, A. AU - Torres, P. TI - On a two-point boundary value problem for second order singular equations JO - Czechoslovak Mathematical Journal PY - 2003 SP - 19 EP - 43 VL - 53 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2003__53_1_a2/ LA - en ID - CMJ_2003__53_1_a2 ER -
Lomtatidze, A.; Torres, P. On a two-point boundary value problem for second order singular equations. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 19-43. http://geodesic.mathdoc.fr/item/CMJ_2003__53_1_a2/