Incidence structures of type $(p, n)$
Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 9-18.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Every incidence structure ${\mathcal J}$ (understood as a triple of sets $(G, M, I)$, ${I}\subseteq G \times M$) admits for every positive integer $p$ an incidence structure ${\mathcal J}^p=(G^p, M^p, \mathrel {{\mathrm I}^p})$ where $G^p$ ($M^p$) consists of all independent $p$-element subsets in $G$ ($M$) and $\mathrel {{\mathrm I}^p}$ is determined by some bijections. In the paper such incidence structures ${\mathcal J}$ are investigated the ${\mathcal J}^p$’s of which have their incidence graphs of the simple join form. Some concrete illustrations are included with small sets $G$ and $M$.
Classification : 06B05, 08A02, 08A35
Keywords: incidence structures; independent sets
@article{CMJ_2003__53_1_a1,
     author = {Machala, Franti\v{s}ek},
     title = {Incidence structures of type $(p, n)$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {9--18},
     publisher = {mathdoc},
     volume = {53},
     number = {1},
     year = {2003},
     mrnumber = {1961995},
     zbl = {1015.08001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2003__53_1_a1/}
}
TY  - JOUR
AU  - Machala, František
TI  - Incidence structures of type $(p, n)$
JO  - Czechoslovak Mathematical Journal
PY  - 2003
SP  - 9
EP  - 18
VL  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2003__53_1_a1/
LA  - en
ID  - CMJ_2003__53_1_a1
ER  - 
%0 Journal Article
%A Machala, František
%T Incidence structures of type $(p, n)$
%J Czechoslovak Mathematical Journal
%D 2003
%P 9-18
%V 53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2003__53_1_a1/
%G en
%F CMJ_2003__53_1_a1
Machala, František. Incidence structures of type $(p, n)$. Czechoslovak Mathematical Journal, Tome 53 (2003) no. 1, pp. 9-18. http://geodesic.mathdoc.fr/item/CMJ_2003__53_1_a1/