Extreme geodesic graphs
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 771-780.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For two vertices $u$ and $v$ of a graph $G$, the closed interval $I[u, v]$ consists of $u$, $v$, and all vertices lying in some $u\text{--}v$ geodesic of $G$, while for $S \subseteq V(G)$, the set $I[S]$ is the union of all sets $I[u, v]$ for $u, v \in S$. A set $S$ of vertices of $G$ for which $I[S]=V(G)$ is a geodetic set for $G$, and the minimum cardinality of a geodetic set is the geodetic number $g(G)$. A vertex $v$ in $G$ is an extreme vertex if the subgraph induced by its neighborhood is complete. The number of extreme vertices in $G$ is its extreme order $\mathop {\mathrm ex}(G)$. A graph $G$ is an extreme geodesic graph if $g(G) = \mathop {\mathrm ex}(G)$, that is, if every vertex lies on a $u\text{--}v$ geodesic for some pair $u$, $ v$ of extreme vertices. It is shown that every pair $a$, $ b$ of integers with $0 \le a \le b$ is realizable as the extreme order and geodetic number, respectively, of some graph. For positive integers $r, d,$ and $k \ge 2$, it is shown that there exists an extreme geodesic graph $G$ of radius $r$, diameter $d$, and geodetic number $k$. Also, for integers $n$, $ d, $ and $k$ with $2 \le d n$, $2 \le k n$, and $n -d - k +1 \ge 0$, there exists a connected extreme geodesic graph $G$ of order $n$, diameter $d$, and geodetic number $k$. We show that every graph of order $n$ with geodetic number $n-1$ is an extreme geodesic graph. On the other hand, for every pair $k$, $ n$ of integers with $2 \le k \le n-2$, there exists a connected graph of order $n$ with geodetic number $k$ that is not an extreme geodesic graph.
Classification : 05C12, 05C35
Keywords: geodetic set; geodetic number; extreme order; extreme geodesic graph
@article{CMJ_2002__52_4_a9,
     author = {Chartrand, Gary and Zhang, Ping},
     title = {Extreme geodesic graphs},
     journal = {Czechoslovak Mathematical Journal},
     pages = {771--780},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2002},
     mrnumber = {1940058},
     zbl = {1009.05051},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a9/}
}
TY  - JOUR
AU  - Chartrand, Gary
AU  - Zhang, Ping
TI  - Extreme geodesic graphs
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 771
EP  - 780
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a9/
LA  - en
ID  - CMJ_2002__52_4_a9
ER  - 
%0 Journal Article
%A Chartrand, Gary
%A Zhang, Ping
%T Extreme geodesic graphs
%J Czechoslovak Mathematical Journal
%D 2002
%P 771-780
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a9/
%G en
%F CMJ_2002__52_4_a9
Chartrand, Gary; Zhang, Ping. Extreme geodesic graphs. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 771-780. http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a9/