Chebyshev centers in hyperplanes of $c_0$
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 721-729.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We give a full characterization of the closed one-codimensional subspaces of $c_0$, in which every bounded set has a Chebyshev center. It turns out that one can consider equivalently only finite sets (even only three-point sets) in our case, but not in general. Such hyperplanes are exactly those which are either proximinal or norm-one complemented.
Classification : 41A65, 46B20, 46B25
Keywords: Chebyshev centers; proximinal hyperplanes; space $c_0$
@article{CMJ_2002__52_4_a4,
     author = {Vesel\'y, Libor},
     title = {Chebyshev centers in hyperplanes of $c_0$},
     journal = {Czechoslovak Mathematical Journal},
     pages = {721--729},
     publisher = {mathdoc},
     volume = {52},
     number = {4},
     year = {2002},
     mrnumber = {1940053},
     zbl = {1012.41029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a4/}
}
TY  - JOUR
AU  - Veselý, Libor
TI  - Chebyshev centers in hyperplanes of $c_0$
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 721
EP  - 729
VL  - 52
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a4/
LA  - en
ID  - CMJ_2002__52_4_a4
ER  - 
%0 Journal Article
%A Veselý, Libor
%T Chebyshev centers in hyperplanes of $c_0$
%J Czechoslovak Mathematical Journal
%D 2002
%P 721-729
%V 52
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a4/
%G en
%F CMJ_2002__52_4_a4
Veselý, Libor. Chebyshev centers in hyperplanes of $c_0$. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 721-729. http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a4/