On the center of the generalized Liénard system
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 817-832
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
In this paper, we discuss the conditions for a center for the generalized Liénard system \[ \frac {{\rm d}x}{{\rm d}t}=\varphi (y)-F(x), \qquad \frac {{\rm d}y}{{\rm d}t}=-g(x), \] or \[ \frac {{\rm d}x}{{\rm d}t}=\psi (y), \qquad \frac {{\rm dy}}{{\rm d}t}= -f(x)h(y)-g(x), \] with $f(x)$, $g(x)$, $\varphi (y)$, $\psi (y)$, $h(y)\: \mathbb R\rightarrow \mathbb R$, $F(x)=\int _0^xf(x)\mathrm{d}x$, and $xg(x)>0$ for $x\ne 0$. By using a different technique, that is, by introducing auxiliary systems and using the differential inquality theorem, we are able to generalize and improve some results in [1], [2].
Classification :
34C05, 34C25
Keywords: generalized Liénard system; local center; global center; the differetial inequality theorem; the first approximation
Keywords: generalized Liénard system; local center; global center; the differetial inequality theorem; the first approximation
@article{CMJ_2002__52_4_a13,
author = {Zhao, Cheng-Dong and He, Qi-Min},
title = {On the center of the generalized {Li\'enard} system},
journal = {Czechoslovak Mathematical Journal},
pages = {817--832},
publisher = {mathdoc},
volume = {52},
number = {4},
year = {2002},
mrnumber = {1940062},
zbl = {1021.34023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a13/}
}
Zhao, Cheng-Dong; He, Qi-Min. On the center of the generalized Liénard system. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 4, pp. 817-832. http://geodesic.mathdoc.fr/item/CMJ_2002__52_4_a13/