Functional differential equations
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 553-563.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. In this paper we apply this technique to functional differential problems. It is shown that linear iterations converge to the unique solution and this convergence is superlinear.
Classification : 34A45, 34K05, 34K07, 34K28
Keywords: quasilinearization; monotone iterations; superlinear convergence
@article{CMJ_2002__52_3_a9,
     author = {Jankowski, Tadeusz},
     title = {Functional differential equations},
     journal = {Czechoslovak Mathematical Journal},
     pages = {553--563},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2002},
     mrnumber = {1923261},
     zbl = {1023.34070},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a9/}
}
TY  - JOUR
AU  - Jankowski, Tadeusz
TI  - Functional differential equations
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 553
EP  - 563
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a9/
LA  - en
ID  - CMJ_2002__52_3_a9
ER  - 
%0 Journal Article
%A Jankowski, Tadeusz
%T Functional differential equations
%J Czechoslovak Mathematical Journal
%D 2002
%P 553-563
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a9/
%G en
%F CMJ_2002__52_3_a9
Jankowski, Tadeusz. Functional differential equations. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 553-563. http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a9/