Functional differential equations
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 553-563
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. In this paper we apply this technique to functional differential problems. It is shown that linear iterations converge to the unique solution and this convergence is superlinear.
Classification :
34A45, 34K05, 34K07, 34K28
Keywords: quasilinearization; monotone iterations; superlinear convergence
Keywords: quasilinearization; monotone iterations; superlinear convergence
@article{CMJ_2002__52_3_a9,
author = {Jankowski, Tadeusz},
title = {Functional differential equations},
journal = {Czechoslovak Mathematical Journal},
pages = {553--563},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2002},
mrnumber = {1923261},
zbl = {1023.34070},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a9/}
}
Jankowski, Tadeusz. Functional differential equations. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 553-563. http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a9/