Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 537-544
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We present a lower and an upper bound for the second smallest eigenvalue of Laplacian matrices in terms of the averaged minimal cut of weighted graphs. This is used to obtain an upper bound for the real parts of the non-maximal eigenvalues of irreducible nonnegative matrices. The result can be applied to Markov chains.
Classification :
05C50, 15A42, 15A48, 60J10
Keywords: eigenvalue; irreducible nonnegative matrix; averaged minimal cut
Keywords: eigenvalue; irreducible nonnegative matrix; averaged minimal cut
@article{CMJ_2002__52_3_a7,
author = {Zhang, Xiao-Dong and Luo, Rong},
title = {Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices},
journal = {Czechoslovak Mathematical Journal},
pages = {537--544},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2002},
mrnumber = {1923259},
zbl = {1014.15013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a7/}
}
TY - JOUR AU - Zhang, Xiao-Dong AU - Luo, Rong TI - Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices JO - Czechoslovak Mathematical Journal PY - 2002 SP - 537 EP - 544 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a7/ LA - en ID - CMJ_2002__52_3_a7 ER -
Zhang, Xiao-Dong; Luo, Rong. Upper bound for the non-maximal eigenvalues of irreducible nonnegative matrices. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 537-544. http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a7/