A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 531-536
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We show that a Pettis integrable function from a closed interval to a Banach space is Henstock-Kurzweil integrable. This result can be considered as a continuous version of the celebrated Orlicz-Pettis theorem concerning series in Banach spaces.
Classification :
26A39, 28A75, 28B05, 28E50, 46G10
Keywords: Pettis integrability; HK-integrals; Saks-Henstock’s property
Keywords: Pettis integrability; HK-integrals; Saks-Henstock’s property
@article{CMJ_2002__52_3_a6,
author = {Fong, C. K.},
title = {A continous version of {Orlicz-Pettis} theorem via vector-valued {Henstock-Kurzweil} integrals},
journal = {Czechoslovak Mathematical Journal},
pages = {531--536},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2002},
mrnumber = {1923258},
zbl = {1011.28006},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a6/}
}
TY - JOUR AU - Fong, C. K. TI - A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals JO - Czechoslovak Mathematical Journal PY - 2002 SP - 531 EP - 536 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a6/ LA - en ID - CMJ_2002__52_3_a6 ER -
Fong, C. K. A continous version of Orlicz-Pettis theorem via vector-valued Henstock-Kurzweil integrals. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 531-536. http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a6/