An analogue of Montel’s theorem for some classes of rational functions
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 483-498
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
For sequences of rational functions, analytic in some domain, a theorem of Montel’s type is proved. As an application, sequences of rational functions of the best $L_p$-approximation with an unbounded number of finite poles are considered.
Classification :
30B40, 30D45, 30E10, 41A20, 41A50
Keywords: normal families; best $L_p$-approximation
Keywords: normal families; best $L_p$-approximation
@article{CMJ_2002__52_3_a3,
author = {Kovacheva, R. K. and Lawrynowicz, J.},
title = {An analogue of {Montel{\textquoteright}s} theorem for some classes of rational functions},
journal = {Czechoslovak Mathematical Journal},
pages = {483--498},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2002},
mrnumber = {1923255},
zbl = {1011.30001},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a3/}
}
TY - JOUR AU - Kovacheva, R. K. AU - Lawrynowicz, J. TI - An analogue of Montel’s theorem for some classes of rational functions JO - Czechoslovak Mathematical Journal PY - 2002 SP - 483 EP - 498 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a3/ LA - en ID - CMJ_2002__52_3_a3 ER -
Kovacheva, R. K.; Lawrynowicz, J. An analogue of Montel’s theorem for some classes of rational functions. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 483-498. http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a3/