An analogue of Montel’s theorem for some classes of rational functions
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 483-498.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

For sequences of rational functions, analytic in some domain, a theorem of Montel’s type is proved. As an application, sequences of rational functions of the best $L_p$-approximation with an unbounded number of finite poles are considered.
Classification : 30B40, 30D45, 30E10, 41A20, 41A50
Keywords: normal families; best $L_p$-approximation
@article{CMJ_2002__52_3_a3,
     author = {Kovacheva, R. K. and Lawrynowicz, J.},
     title = {An analogue of {Montel{\textquoteright}s} theorem for some classes of rational functions},
     journal = {Czechoslovak Mathematical Journal},
     pages = {483--498},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2002},
     mrnumber = {1923255},
     zbl = {1011.30001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a3/}
}
TY  - JOUR
AU  - Kovacheva, R. K.
AU  - Lawrynowicz, J.
TI  - An analogue of Montel’s theorem for some classes of rational functions
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 483
EP  - 498
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a3/
LA  - en
ID  - CMJ_2002__52_3_a3
ER  - 
%0 Journal Article
%A Kovacheva, R. K.
%A Lawrynowicz, J.
%T An analogue of Montel’s theorem for some classes of rational functions
%J Czechoslovak Mathematical Journal
%D 2002
%P 483-498
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a3/
%G en
%F CMJ_2002__52_3_a3
Kovacheva, R. K.; Lawrynowicz, J. An analogue of Montel’s theorem for some classes of rational functions. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 483-498. http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a3/