The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 575-583.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

Let $\varphi _1,\dots ,\varphi _n$ be real homogeneous functions in $C^\infty (\mathbb R^n-\lbrace 0\rbrace )$ of degree $k\ge 2$, let $\varphi (x) =(\varphi _1(x),\dots ,\varphi _n(x))$ and let $\mu $ be the Borel measure on $\mathbb R^{2n}$ given by \[ \mu (E) =\int _{\mathbb R^n}\chi _E(x,\varphi (x))\, |x|^{\gamma -n}\mathrm{d}x \] where $\mathrm{d}x$ denotes the Lebesgue measure on $\mathbb R^n$ and $\gamma >0$. Let $T_\mu $ be the convolution operator $T_\mu f(x)=(\mu *f)(x)$ and let \[ E_\mu =\lbrace (1/p,1/q)\:\Vert T_\mu \Vert _{p,q}\infty ,\hspace{5.0pt}1\le p, \,q\le \infty \rbrace . \] Assume that, for $x\ne 0$, the following two conditions hold: $\det ({\mathrm d}^2\varphi (x) h)$ vanishes only at $h=0$ and $\det ({\mathrm d} \varphi (x)) \ne 0$. In this paper we show that if $\gamma >n(k+1)/3$ then $E_\mu $ is the empty set and if $\gamma \le n(k+1)/3$ then $E_\mu $ is the closed segment with endpoints $D=\bigl (1-\frac{\gamma }{n(k+1)},1-\frac{2\gamma }{n(k+1)}\bigr )$ and $D^{\prime }=\bigl (\frac{2\gamma }{n(1+k)},\frac{\gamma }{n(1+k)}\bigr )$. Also, we give some examples.
Classification : 28C10, 42B15, 42B20, 47B38
Keywords: singular measures; convolution operators
@article{CMJ_2002__52_3_a11,
     author = {Ferreyra, E. and Godoy, T. and Urciuolo, M.},
     title = {The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support},
     journal = {Czechoslovak Mathematical Journal},
     pages = {575--583},
     publisher = {mathdoc},
     volume = {52},
     number = {3},
     year = {2002},
     mrnumber = {1923263},
     zbl = {1012.42012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a11/}
}
TY  - JOUR
AU  - Ferreyra, E.
AU  - Godoy, T.
AU  - Urciuolo, M.
TI  - The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 575
EP  - 583
VL  - 52
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a11/
LA  - en
ID  - CMJ_2002__52_3_a11
ER  - 
%0 Journal Article
%A Ferreyra, E.
%A Godoy, T.
%A Urciuolo, M.
%T The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support
%J Czechoslovak Mathematical Journal
%D 2002
%P 575-583
%V 52
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a11/
%G en
%F CMJ_2002__52_3_a11
Ferreyra, E.; Godoy, T.; Urciuolo, M. The type set for some measures on $\mathbb R^{2n}$ with $n$-dimensional support. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 575-583. http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a11/