Ultra $LI$-ideals in lattice implication algebras
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 463-468
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We define an ultra $LI$-ideal of a lattice implication algebra and give equivalent conditions for an $LI$-ideal to be ultra. We show that every subset of a lattice implication algebra which has the finite additive property can be extended to an ultra $LI$-ideal.
Classification :
03G10, 06B10, 54E15
Keywords: lattice implication algebra; (ultra) $LI$-ideal; finite additive property
Keywords: lattice implication algebra; (ultra) $LI$-ideal; finite additive property
@article{CMJ_2002__52_3_a1,
author = {Qin, Keyun and Xu, Yang and Jun, Young Bae},
title = {Ultra $LI$-ideals in lattice implication algebras},
journal = {Czechoslovak Mathematical Journal},
pages = {463--468},
publisher = {mathdoc},
volume = {52},
number = {3},
year = {2002},
mrnumber = {1923253},
zbl = {1012.03061},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a1/}
}
TY - JOUR AU - Qin, Keyun AU - Xu, Yang AU - Jun, Young Bae TI - Ultra $LI$-ideals in lattice implication algebras JO - Czechoslovak Mathematical Journal PY - 2002 SP - 463 EP - 468 VL - 52 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a1/ LA - en ID - CMJ_2002__52_3_a1 ER -
Qin, Keyun; Xu, Yang; Jun, Young Bae. Ultra $LI$-ideals in lattice implication algebras. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 3, pp. 463-468. http://geodesic.mathdoc.fr/item/CMJ_2002__52_3_a1/