Semiregularity of congruences implies congruence modularity at 0
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 333-336
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We introduce a weakened form of regularity, the so called semiregularity, and we show that if every diagonal subalgebra of $\mathcal A \times \mathcal A$ is semiregular then $\mathcal A$ is congruence modular at 0.
Classification :
08A30, 08B10
Keywords: regularity; modularity; semiregularity; modularity at 0
Keywords: regularity; modularity; semiregularity; modularity at 0
@article{CMJ_2002__52_2_a8,
author = {Chajda, Ivan},
title = {Semiregularity of congruences implies congruence modularity at 0},
journal = {Czechoslovak Mathematical Journal},
pages = {333--336},
publisher = {mathdoc},
volume = {52},
number = {2},
year = {2002},
mrnumber = {1905440},
zbl = {1011.08002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a8/}
}
Chajda, Ivan. Semiregularity of congruences implies congruence modularity at 0. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 333-336. http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a8/