Semiregularity of congruences implies congruence modularity at 0
Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 333-336.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We introduce a weakened form of regularity, the so called semiregularity, and we show that if every diagonal subalgebra of $\mathcal A \times \mathcal A$ is semiregular then $\mathcal A$ is congruence modular at 0.
Classification : 08A30, 08B10
Keywords: regularity; modularity; semiregularity; modularity at 0
@article{CMJ_2002__52_2_a8,
     author = {Chajda, Ivan},
     title = {Semiregularity of congruences implies congruence modularity at 0},
     journal = {Czechoslovak Mathematical Journal},
     pages = {333--336},
     publisher = {mathdoc},
     volume = {52},
     number = {2},
     year = {2002},
     mrnumber = {1905440},
     zbl = {1011.08002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a8/}
}
TY  - JOUR
AU  - Chajda, Ivan
TI  - Semiregularity of congruences implies congruence modularity at 0
JO  - Czechoslovak Mathematical Journal
PY  - 2002
SP  - 333
EP  - 336
VL  - 52
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a8/
LA  - en
ID  - CMJ_2002__52_2_a8
ER  - 
%0 Journal Article
%A Chajda, Ivan
%T Semiregularity of congruences implies congruence modularity at 0
%J Czechoslovak Mathematical Journal
%D 2002
%P 333-336
%V 52
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a8/
%G en
%F CMJ_2002__52_2_a8
Chajda, Ivan. Semiregularity of congruences implies congruence modularity at 0. Czechoslovak Mathematical Journal, Tome 52 (2002) no. 2, pp. 333-336. http://geodesic.mathdoc.fr/item/CMJ_2002__52_2_a8/